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ABSTRACT 

In this work, we introduce the notion of relation-theoretic 𝜑-contractive mappings in cone metric spaces over 

Banach algebra which is equipped with a binary relation. Some fixed point results for such mappings are proved. 

Some examples are provided which illustrate the notions introduced and the results proved herein. 
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I. INTRODUCTION 
 

The notion of vector valued metric spaces was introduced by several authors with various names, e.g., cone metric 

spaces, 𝐾-metric spaces and 𝐾-normed spaces etc. (see, [2, 5, 7, 20, 22]). Huang and Zhang [5] introduced such 
spaces under the name of cone metric spaces. Apart from other, Huang and Zhang [5] defined the Cauchy sequences 

and the convergence of the sequences in these spaces by using the interior points of cone in Banach spaces. While, 

other used the notion of norms to define Cauchy sequences and the convergence of the sequences.Huang and Zhang 

[5] introduced some contractive conditions and proved some fixed point results in cone metric spaces. Although, in 

some recent papers it was shown that the fixed point results proved in the cone metric spaces are the consequences 

of their existing usual metric versions. In 2013, Liu and Xu [10] initiate the study of fixed point theorems in the cone 

metric spaces over Banach algebra. They used a vector contractive constant instead of scalar and defined the 

contractive conditions of mappings. They showed that the fixed point results for such contractive mappings cannot 

be derived from the existing usual metric version, and so, it is worth to study such fixed point results.  

 

The study of fixed point theorems in metric spaces equipped with a partial order relation was initiated by Ran and 
Reurings[20] which was further improved by several authors, see, e.g., [1, 13, 14, 22] etc. Recently, Alam and 

Imdad [1] introduced the notion of relation theoretic contraction on the metric spaces equipped with an arbitrary 

binary operation and unified and generalized several known results of metric spaces.  

 

Cone comparison functions were introduced to generalize the contractive conditions of mappings defined on a cone 

metric space (see, [3, 4]). Malhotra et al. [12] introduced the relation theoretic contraction principle in cone metric 

spaces over Banach algebra and unified the results of Alam and Imdad [1] and Liu and Xu [10]. In this paper, we 

use the concept of cone comparison functions and introduce the relation theoretic 𝜑-contractive mappings on cone 

metric spaces over Banach algebra and prove some fixed point results for such mappings. These results unify the 

result of Malhotra et al. [12], Alam and Imdad [1] and Liu and Xu [10]. Some examplesare presented which 

illustrate the notions and results.  

 

II. PRELIMINARIES 
 

Let 𝐴 be a real Banach algebra, i.e., 𝐴 is a real Banach space in which an operation of multiplication is defined, 

subject to the following properties (see, [18]): for all 𝑥,𝑦, 𝑧 ∈ 𝐴;𝑎 ∈ ℝ 

1. 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧; 
2. 𝑥 𝑦 + 𝑧 = 𝑥𝑦 + 𝑥𝑧  and  (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧; 
3. 𝑎(𝑥𝑦) = (𝑎𝑥)𝑦 = 𝑥(𝑎𝑦); 
4. ∥ 𝑥𝑦 ∥ ≤ ∥ 𝑥 ∥∥ 𝑦 ∥. 
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In this paper, we shall assume that the Banach algebra 𝐴 has a unit, i.e., a multiplicative identity 𝑒 such that 𝑒𝑥 =
𝑥𝑒 = 𝑥  for all 𝑥 ∈ 𝐴. An element 𝑥 ∈  𝐴 is said to be invertible if there is an inverse element 𝑦 ∈ 𝐴 such that 𝑥𝑦 =
𝑦𝑥 = 𝑒 . The inverse of  𝑥 ∈ 𝑋  is denoted by 𝑥−1. For more details we refer to [18]. 

The following proposition is well known and can be found, e.g., in [18]. 

 

Proposition1.Let𝐴 be a real Banach algebra with the unit 𝑒 and 𝑥 ∈ 𝐴. If the spectral radius 𝜌 𝑥  of 𝑥 is less than 

one, i.e., 

𝜌 𝑥 = 𝑙𝑖𝑚
𝑛→∞

 𝑥𝑛 
1
𝑛 = 𝑖𝑛𝑓

𝑛≥1

 𝑥𝑛 
1
𝑛 < 1. 

Then, 𝑒 − 𝑥 is invertible. Actually, 

(𝑒 − 𝑥)−1 =   𝑥𝑖

∞

𝑖=0

. 

A subset 𝑃 of 𝐴 is called a cone if: 

1. 𝑃 is closed and  𝜃, 𝑒 ⊂ 𝑃, where 𝜃 is the zero vector of 𝐴; 

2. 𝛼𝑃 + 𝛽𝑃 ⊂ 𝑃 for all non-negative real numbers 𝛼,𝛽; 

3. 𝑃2 =  𝑃𝑃 ⊂ 𝑃; 

4. 𝑃 ∩  −𝑃 = {𝜃}. 

 

For a given cone 𝑃 ⊂ 𝐴, we can define a partial ordering ≼ in 𝐴 with respect to 𝑃by  𝑥 ≼ 𝑦 (or equivalently 𝑦 ≽ 𝑥) 

if and only if 𝑦 − 𝑥 ∈ 𝑃. The notation 𝑥 ≪ 𝑦 (or equivalently 𝑦 ≫ 𝑥) will stand for 𝑦 − 𝑥 ∈ 𝑃∘, where 𝑃∘denotes the 

interior of 𝑃. 

 

The cone 𝑃 is called normal if there exists a number 𝐾 > 0 such that for all 𝑥,𝑦 ∈ 𝑃, 
𝑥 ≼ 𝑦 implies 𝑥 ≤ 𝐾 𝑦 . 
The least positive value of 𝐾 satisfying the above inequality is called the normal constant of P (see [5]). Note that, 

for any normal cone 𝑃 we have 𝐾 ≥ 1 (see [17]). In the following we always assume that 𝑃 is a cone in a real 

Banach algebra  𝐴 with 𝑃∘ ≠ ∅ (i.e., the cone 𝑃 is a solid cone) and ≼ is the partial ordering with respect to 𝑃. 

 

Proposition 2.(See [21]). Let 𝑃 be a cone in a Banach algebra  𝐴, 𝑎 ∈ 𝑃 and 𝑏, 𝑐 ∈ 𝐴 are such that 𝑏 ≼ 𝑐 , then 

𝑎𝑏 ≼ 𝑎𝑐. 
 

Lemma 3.(See [6, 15]).If 𝐴 is a real Banach space with a solid cone 𝑃. Then: 

(a) If 𝑎 ≼ 𝜆𝑎 with 𝑎 ∈ 𝑃 and 0 ≤ 𝜆 < 1, then 𝑎 = 𝜃. 

(b)  If 𝑎,𝑏, 𝑐 ∈ 𝐴 and 𝑎 ≼ 𝑏 ≪ 𝑐, then 𝑎 ≪ 𝑐. 

(c) If  𝑢 ∈ 𝑃 and if  𝜃 ≼ 𝑢 ≪ 𝑐 for each 𝜃 ≪  𝑐, then 𝑢 = 𝜃. 
(d) If  ∥ 𝑥𝑛 ∥→ 0 as 𝑛 → ∞, then for any 𝜃 ≪  𝑐, there exists  𝑛0 ∈ ℕ such that, 𝑥𝑛 ≪ 𝑐 for all 𝑛 < 𝑛0 . 

 

Remark 4.(See [21]). If 𝜌 𝑎 < 1 then 𝑎𝑛 → 0 as 𝑛 → ∞. 
 

Definition5.(See [10, 11,5]).Let 𝑋 be a non-empty set. Suppose that the mapping 𝑑:𝑋 × 𝑋 → 𝐴 satisfies: 

1. 𝜃 ≼ 𝑑 𝑥,𝑦 for all 𝑥,𝑦 ∈ 𝑋 and 𝑑(𝑥,𝑦) = 𝜃 if and only if  𝑥 = 𝑦. 
2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋. 
3. 𝑑(𝑥, 𝑦) ≼ 𝑑(𝑥, 𝑧) + 𝑑(𝑧,𝑦) for all 𝑥,𝑦, 𝑧 ∈ 𝑋. 

 

Then 𝑑 is called a cone metric on 𝑋, and (𝑋, 𝑑) is called a cone metric space over the Banach algebra 𝐴. Cone metric 

space is called normal if 𝑃 is a normal cone. 

 

Definition 6.(See [5]). Let (𝑋,𝑑) be a cone metric space, 𝑥 ∈ 𝑋 and {𝑥𝑛} be a sequence in 𝑋. Then: 

1. The sequence {𝑥𝑛 } converges to 𝑥  whenever for each 𝑐 ∈ 𝐴  with 𝜃 ≪ 𝑐,  there is 𝑛0 ∈ ℕ  such that 

𝑑 𝑥𝑛 ,𝑥 ≪ 𝑐 for all 𝑛 > 𝑛0. We denote this by 𝑙𝑖𝑚𝑛→∞ 𝑥𝑛 = 𝑥 or 𝑥𝑛 → 𝑥 as 𝑛 → ∞. 
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2. The sequence  𝑥𝑛  is a Cauchy sequence whenever for each 𝑐 ∈ 𝐴 with 𝜃 ≪ 𝑐, there is 𝑛0 ∈ ℕ such that 

𝑑(𝑥𝑛 ,𝑥𝑚 ) ≪ 𝑐 for all 𝑛,𝑚 > 𝑛0. 

3.  𝑋, 𝑑 is a complete cone metric space if every Cauchy sequence in 𝑋 is convergent in X. 
 

A mapping 𝑇: 𝑋 → 𝑋  is called continuous at point  𝑥 ∈ 𝑋  (see, [12]), if for every sequence 𝑥𝑛  in  𝑋 such that 

𝑥𝑛 → 𝑥 as 𝑛 → ∞, we have  𝑇𝑥𝑛 → 𝑇𝑥  as 𝑛 → ∞. 𝑇is said to be continuous on 𝑋 if it is continuous at every point 

of 𝑋. 

 

Remark 7.The limit of a convergent sequence in a cone metric space with solid cone is unique. For instance, if a 

sequence  𝑥𝑛  ⊂ 𝑋 has two distinct limits say 𝑥, 𝑦 ∈ 𝑋, then for every 𝑐 ∈ 𝐴 with 𝜃 ≪ 𝑐 there exists 𝑛0 ∈ 𝑋 such 

that 𝑑(𝑥𝑛 ,𝑥) ≪
𝑐

2
 and 𝑑(𝑥𝑛 ,𝑦) ≪

𝑐

2
 for all 𝑛 > 𝑛0. Therefore by Lemma 2.3 we have 

𝑑 𝑥, 𝑦 ≼ 𝑑 𝑥, 𝑥𝑛  + 𝑑 𝑥𝑛 ,𝑦 ≪
𝑐

2
+
𝑐

2
= 𝑐 

for all 𝑛 > 𝑛0. Therefore, 𝑥 = 𝑦, which completes the proof. 

 

Definition 8.(See [4]). Let 𝑃  be a cone in Banach algebra  𝐴. A non-decreasing function 𝜑:𝑃 → 𝑃  is called a 
comparison function if it satisfies: 

(i) 𝜑 𝜃 = 𝜃 and 𝜃 ≺ 𝜑(𝑥) ≺ 𝑥 for all 𝑥 ∈ 𝑃\{𝜃}. 

(ii) If 𝑥 ∈ 𝑃∘ then 𝑥 − 𝜑 𝑥 ∈ 𝑃∘. 

(iii)  limn→∞ 𝜑𝑛  𝑥 = 𝜃 for all 𝑥 ∈ 𝑃\{𝜃}. 

 

Definition 9.(See [9]).Let 𝑋 be a nonempty set. A subset ℛ of 𝑋 × 𝑋 is called a binary relation on 𝑋. Notice that for 

each pair 𝑥, 𝑦 ∈ 𝑋 one of the following conditions holds: 

(i) (𝑥, 𝑦) ∈  ℛ which amounts to saying that “𝑥 is ℛ-related to 𝑦” or “𝑥 relates to 𝑦 under ℛ.” Sometimes, we 

write 𝑥ℛ𝑦  instead of 𝑥,𝑦 ∈ ℛ. 
(ii) (𝑥, 𝑦) ∉  ℛ, which means that “𝑥 is not ℛ-related to 𝑦” or “𝑥 does not relate to 𝑦 under ℛ”. 

 

Trivially,𝑋 × 𝑋 and 𝜙 being subsets of 𝑋 × 𝑋 are binary relations on 𝑋, which arerespectively called the universal 

relation (or full relation) and empty relation. Another important relation of this kind is the relation 

∆𝑥= {(𝑥, 𝑥): 𝑥 ∈ 𝑋}, 
andcalled the identity relation or the diagonal relation on X. Throughout this paper, ℛ standsfor a nonempty binary 

relation, but for the sake of simplicity, we write only “binaryrelation”instead of “nonempty binary relation”. 

 

Definition 10. (See [1]).Let ℛ be a binary relation defined on a nonempty set 𝑋and 𝑥 , 𝑦 ∈ 𝑋. We say that 𝑥 and 𝑦 

are ℛ-comparative if either  𝑥, 𝑦 ∈ ℛ or (𝑦,𝑥) ∈ ℛ. We denote itby [𝑥,𝑦] ∈ ℛ. 
 

Definition 11. (See [9]). Let 𝑋 be a nonempty set and ℛ a binary relation on 𝑋. 

(1) The inverse or transpose or dual relation of ℛ , denoted by ℛ−1 , is defined by ℛ−1 =   𝑥,𝑦 ∈ 𝑋 ×
𝑋:𝑦,𝑥∈ ℛ. 

(2) The reflexive closure of ℛ,  denoted by  ℛ# , is defined to be the set  ℛ ∪ ∆X  (i. e. ,ℛ#: =  ℛ ∪ ∆𝑋). 
Indeed ℛ#is the smallest reflexive relation on 𝑋 containingℛ. 

(3) The symmetric closure ofℛ, denoted by ℛs , is defined to be the set  ℛ ∪ ℛ−1 i. e. ,ℛ𝑠 : = ℛ ∪ ℛ−1 . Indeed, 

ℛs  is the smallest symmetric relation on 𝑋 containing  ℛ. 
 

Proposition 12. (See [1]). For a binary relation ℛ defined on a nonempty set 𝑋, we define the relation ℛ𝑠 by: 
 𝑥, 𝑦 ∈ ℛ𝑠 ⟺  𝑥,𝑦 ∈ ℛ. 

Definition 13.(See [1]).Let 𝑋 be a nonempty set andℛ a binary relation on 𝑋. Then: 

(a) A sequence 𝑥𝑛  in 𝑋 is calledℛ-preserving if 𝑥𝑛 ,𝑥𝑛+1 ∈ ℛ for all 𝑛 ∈ ℕ. 

(b) 𝑋the relation 𝑅 is called 𝑇-closed if for every 𝑥,𝑦 ∈ ℛ, we have 𝑇𝑥,𝑇𝑦 ∈ ℛ. 
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Proposition 14.(See [1]). Let 𝑋,𝑇 and ℛ be the same as in Definition 2.13. If ℛ is 𝑇-closed, then  ℛ𝑠 is also 𝑇-

closed. 

 

Definition 15.(See [8, 19]).Let X be a nonempty set andℛ a binary relation on X. 

(a) Asubset E of X is calledℛ-directed if for each 𝑥, 𝑦 ∈ 𝐸, there exists z ∈ X such that 𝑥, 𝑧 ∈ ℛ andd (𝑦, 𝑧) ∈
ℛ. 

(b) For 𝑥,𝑦 ∈ 𝑋, a path of length 𝑟 (where𝑟is a natural number) in ℛ from 𝑥 to 𝑦 is a finite sequence  𝑧𝑖 𝑖=0
𝑘 ⊂

𝑋 satisfying the following conditions: 

(i) 𝑧0 = 𝑥 and 𝑧𝑟 = 𝑦; 

(ii)  𝑧𝑖 , 𝑧𝑖+1 ∈ ℛ for each 0 ≤ i ≤ r − 1. 
 

Definition 16.(See [12]). Let 𝑋, 𝑑 be a cone metric space over Banach algebra 𝐴, 𝑃 the underlying solid cone and ℛ 

be a binary relation on 𝑋. Then, ℛ is called 𝑑-self-closed if for every  ℛ-preserving sequence 𝑥𝑛  with 𝑥𝑛 → 𝑥 ∈
𝑋 as 𝑛 → ∞, there exists a subsequence  𝑥𝑛𝑘

 of 𝑥𝑛  such that [𝑥𝑛𝑘
,𝑥] ∈ ℛ for all 𝑘 ∈ ℕ. 

 

I. Main results 
We start this section by introducing some auxiliary notions. 

 

Definition 1. Let 𝑋, 𝑑 be a cone metric space over Banach algebra 𝐴, ℭ be the set of all cone comparison functions 

on 𝑃,  𝑇:𝑋 → 𝑋 be a given mapping. We say that 𝑇 is a 𝜑-contractive mapping if there exists a comparison function 

𝜑 ∈ ℭ such that 

 𝑑 𝑇𝑥,𝑇𝑦 ≼ 𝜑 𝑑 𝑥, 𝑦  forall  𝑥,𝑦 ∈ 𝑋 (1)  

Definition2. Let 𝑋,𝑑 be a cone metric space over Banach algebra 𝐴, ℭ be the set of all cone comparison functions 

on  𝑃 , 𝑇:𝑋 → 𝑋  be a given mappingand ℛ  be a binary relation on  𝑋 . We say that 𝑇  is a relation theoretic 𝜑 -

contractive mapping if there exists a comparison function 𝜑 ∈ ℭ such that 

 𝑑 𝑇𝑥,𝑇𝑦 ≼ 𝜑 𝑑 𝑥, 𝑦  forall  𝑥,𝑦 ∈ 𝑋 with  𝑥, 𝑦 ∈ ℛ. (2)  

 

Remark 3.If we take ℛ as universal relation, then a relation theoretic 𝜑-contractive mapping reduces into a 𝜑-

contractive mapping, and so, the class of relation theoretic 𝜑-contractive mappings is a generalization of the class of 

a 𝜑-contractive mappings. The following examples show that this generalization is a proper generalization, as well 

as, the existence and uniqueness of fixed point of a relation theoretic 𝜑-contractive mapping cannot be concluded 

even in a complete cone metric space.  

 

Example 4.Let 𝑋 = ℝ, 𝐴 = 𝐶ℝ
1 [0,1] be the real Banach algebra with point wise multiplication and norm defined by 

 𝑥 𝑡  =  𝑥 𝑡  ∞ +  𝑥′ 𝑡  ∞  for all 𝑥 𝑡 ∈ 𝐴.Let 𝑃 =  𝑥 𝑡 ∈ 𝐴: 𝑥 𝑡 ≥ 0 for all 𝑡 ∈  0,1  be a solid cone in 𝐴. 

Define a mapping 𝑑:𝑋 × 𝑋 → 𝑃 by 𝑑 𝑥, 𝑦 = 𝜌𝑒𝑡  for all 𝑥, 𝑦 ∈ 𝑋, where 𝜌 = |𝑥 − 𝑦|, then (𝑋, 𝑑) is a complete 

cone metric space over Banach algebra 𝐴. Define a mapping 𝑇:𝑋 → 𝑋 by 𝑇𝑥 = 𝑥 for all 𝑥 ∈ 𝑋. Define the relation 

ℛ by ℛ = Δ𝑋 . Then, 𝑇 is a relation theoretic 𝜑-contractive mapping for any arbitrary 𝜑 ∈ ℭ. On the other hand, 𝑇 is 

not a 𝜑-contractive mapping for every 𝜑 ∈ ℭ. 

 

Example 5. Let (𝑋,𝑑) as in the previous example and let 𝑇:𝑋 → 𝑋 be an arbitrary mapping. Define the relation 

ℛ by ℛ = ∅. Then, 𝑇 is a relation theoretic 𝜑-contractive mapping for any arbitrary 𝜑 ∈ ℭ. On the other hand, it is 

easy to see that such mapping 𝑇 need not to be a 𝜑-contractive mapping for every 𝜑 ∈ ℭ. 

The following theorem isan existence result of the fixed point of a continuous 𝜑-contractive mapping on cone metric 

spaces over Banach algebra.  

 

Theorem 6.Let 𝑋, 𝑑 be a complete cone metric space over Banach algebra 𝐴, and 𝑇:𝑋 → 𝑋 be arelation theoretic 

𝜑-contractive mappingsatisfying the following conditions: 

(i) ℛ is 𝑇-closed; 

(ii) there exists 𝑥0 ∈ 𝑋 such that  𝑥0 ,𝑇𝑟𝑥0 ∈ ℛ for all 𝑟 ∈ ℕ; 
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(iii) 𝑇 is continuous on 𝑋. 

 

Then 𝑇 has a fixed point, i.e., there exists𝑥∗ ∈ 𝑋 such that 𝑇𝑥∗ = 𝑥∗. 

Proof.Let 𝑥0 ∈ 𝑋 be such that (𝑥0 ,𝑇𝑟𝑥0) ∈ ℛ for all 𝑟 ∈ ℕ. Define a sequence {𝑥𝑛 } in 𝑋 by 

 𝑥𝑛+1 = 𝑇𝑥𝑛 for all 𝑛 ∈ ℕ. (3)  

Therefore 𝑥0 ,𝑥𝑟 ∈ ℛ  for all  𝑟 ∈ ℕ .Therefore, by 𝑇 -closedness of ℛ  we have  𝑇𝑥0 ,𝑇𝑥𝑟 =  𝑥1 ,𝑥𝑟+1 ∈ ℛ  for 

all 𝑟 ∈ ℕ. 
By induction we obtain 

 𝑥𝑛 ,𝑥𝑟+𝑛  ∈ ℛ forall  𝑟, 𝑛 ∈ ℕ. 

If 𝑥𝑛 = 𝑥𝑛+1 for some 𝑛 ∈ ℕ, then 𝑥∗ = 𝑥𝑛  is a fixed point of 𝑇. Assume that 𝑥𝑛 ≠ 𝑥𝑛+1 for all 𝑛 ∈ ℕ. 

Since 𝑇 is arelation theoretic𝜑-contractive mapping, using (2) and (3) and the properties of 𝜑 we obtain: 
𝑑 𝑥𝑛 ,𝑥𝑛+1 = 𝑑 𝑇𝑥𝑛−1 ,𝑇𝑥𝑛  

≼ 𝜑(𝑑(𝑥𝑛−1 ,𝑥𝑛 ))

= 𝜑(𝑑 𝑇𝑥𝑛−2 ,𝑇𝑥𝑛−1 )

≼ 𝜑2(𝑑 𝑥𝑛−2 ,𝑥𝑛−1 )

= 𝜑2(𝑑 𝑇𝑥𝑛−3 ,𝑇𝑥𝑛−2) 

≼ 𝜑3(𝑑 𝑥𝑛−3 ,𝑥𝑛−2) .

 

Using the properties of comparison function 𝜑, by induction we obtain that: 

 𝑑 𝑥𝑛 ,𝑥𝑛+1 ≼ 𝜑𝑛 𝑑 𝑥0 ,𝑥1  for all 𝑛 ∈ ℕ.  (4)  

For 𝑐 ≫ 𝜃, we can choose 𝑛0 ∈ ℕ and 𝛿 > 0 such that 

𝑐 − 𝜑 𝑐 + {𝑢 ∈ 𝐴: 𝑢 < 𝛿} ⊂ 𝑃∘, 𝜑𝑛 (𝑑 𝑥0 ,𝑥1)  < 𝛿 

and 𝜑𝑛 (𝑑 𝑥0 ,𝑥1) ≪ 𝑐 − 𝜑 𝑐  for all 𝑛 > 𝑛0. 

 

Therefore, by Lemma 2.3, (4) and the above inequality we obtain 

 𝑑 𝑥𝑛 ,𝑥𝑛+1 ≪ 𝑐 − 𝜑 𝑐 ≼ 𝑐 forall 𝑛 > 𝑛0. (5)  

We shall show that the sequence {𝑥𝑛 } is a Cauchy sequence. Then, for 𝑛 > 𝑛0, using (3) and (5) and properties of 

𝜑 we have 
𝑑 𝑥𝑛 ,𝑥𝑛+2 ≼ 𝑑 𝑥𝑛 ,𝑥𝑛+1 + 𝑑(𝑥𝑛+1 ,𝑥𝑛+2)

≪ 𝑐 −𝜑 𝑐 + 𝑑(𝑇𝑥𝑛 ,𝑇𝑥𝑛+1)

≼ 𝑐 − 𝜑 𝑐 + 𝜑(𝑑(𝑥𝑛 ,𝑥𝑛+1))

≼ 𝑐 − 𝜑 𝑐 + 𝜑(𝑐)
= 𝑐.

 

Similarly, for 𝑛 > 𝑛0 using (3) and (5) and properties of 𝜑 we obtain 

𝑑 𝑥𝑛 ,𝑥𝑛+3 ≼ 𝑑 𝑥𝑛 ,𝑥𝑛+1 + 𝑑(𝑥𝑛+1 ,𝑥𝑛+3)

≼ 𝑐 − 𝜑 𝑐 + 𝑑(𝑇𝑥𝑛 ,𝑇𝑥𝑛+2)

≼ 𝑐 − 𝜑 𝑐 + 𝜑(𝑑(𝑥𝑛 ,𝑥𝑛+2))

≼ 𝑐 − 𝜑 𝑐 + 𝜑 𝑐 
= 𝑐.

 

By induction, we obtain 

 𝑑(𝑥𝑛 ,𝑥𝑛+𝑟) ≪ 𝑐 for all 𝑟 ∈ ℕ and 𝑛 > 𝑛0 . (6)  

 

Thus {𝑥𝑛 } is a Cauchy sequence in the cone metric space 𝑋. Since  𝑋,𝑑  is complete, there exists 𝑥∗ ∈ 𝑋 such that 

𝑥𝑛 → 𝑥∗ as 𝑛 → ∞. We shall show that 𝑥∗ is a fixed point of  𝑇. 
 

From the continuity of 𝑇, it follows that𝑥𝑛+1 = 𝑇𝑥𝑛 → 𝑇𝑥∗ as 𝑛 → ∞. In view of Remark 2.7 we obtain 𝑥∗ = 𝑇𝑥∗, 

that is, 𝑥∗ is a fixed point of  𝑇.      ∎ 
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In the next theorem, we replace the continuity of 𝑇 by another hypothesis which does not depend on the nature of  𝑇. 

 

Theorem 7.Let 𝑋, 𝑑 be a complete cone metric space over Banach algebra 𝐴, and 𝑇:𝑋 → 𝑋 be arelation theoretic 

𝜑-contractive mapping satisfying the following conditions: 

(i) ℛ is 𝑇-closed; 

(ii) there exists 𝑥0 ∈ 𝑋 such that  𝑥0 ,𝑇𝑟𝑥0 ∈ ℛ for all 𝑟 ∈ ℕ; 

(iii) ℛ𝑠is d-self-closed. 

 

Then 𝑇 has a fixed point, i.e., there exists 𝑥∗ ∈ 𝑋 such that 𝑇𝑥∗ = 𝑥∗. 

Proof.Following the arguments similar to those in the proof of Theorem 3.6, we obtain that {𝑥𝑛} is a Cauchy 

sequence in 𝑋 and  𝑥𝑛 ,𝑥𝑟+𝑛  ∈ ℛ forall  𝑟,𝑛 ∈ ℕ. By completeness of (𝑋,𝑑), there exists 𝑥∗ ∈ 𝑋 such that 𝑥𝑛 → 𝑥∗ 

as 𝑛 → ∞. By hypothesis (iii) there exists a subsequence {𝑥𝑛𝑘
} such that  𝑥𝑛𝑘

,𝑥∗ ∈ ℛ𝑠 for all 𝑘 ∈ ℕ. 

Now using (2), (3) and hypothesis (iii), we obtain 

𝑑 𝑇𝑥∗,𝑥∗ ≼ 𝑑 𝑇𝑥∗,𝑇𝑥𝑛𝑘
 + 𝑑 𝑇𝑥𝑛𝑘

,𝑥∗ 

≼ 𝜑  𝑑 𝑥∗, 𝑥𝑛𝑘
  + 𝑑 𝑇𝑥𝑛𝑘

,𝑥∗ 

≼ 𝜑  𝑑 𝑥∗, 𝑥𝑛𝑘
  + 𝑑(𝑥𝑛𝑘+1 ,𝑥∗).

 

 

Suppose 𝑐 ∈ 𝑃∘  be given. Since 𝑥𝑛𝑘
→ 𝑥∗  as  𝑘 → ∞ ,then there exists 𝑛0 ∈ ℕ  such 

that 𝑑 𝑥𝑛𝑘
,𝑥∗ ≪

𝑐

2
, 𝑑 𝑥𝑛𝑘+1 ,𝑥∗ ≪

𝑐

2
forall 𝑘 > 𝑛0. So by the properties of the function 𝜑 we have 𝜑 𝑑 𝑥𝑛 ,𝑥∗  ≼

𝜑  
𝑐

2
 ≪

𝑐

2
 for all 𝑘 > 𝑛0. Therefore, it follows from the above inequality that 

𝑑 𝑇𝑥∗,𝑥∗ ≪
𝑐

2
+

𝑐

2
= 𝑐 for all 𝑘 > 𝑛0. 

 

Using Lemma 2.3 we obtain 𝑑 𝑇𝑥∗, 𝑥∗ = 𝜃, i.e., 𝑇𝑥∗ = 𝑥∗. Thus 𝑥∗ is a fixed point of 𝑇.        ∎ 

 

Example 8.Let  𝑋 = ℝ , 𝐴 = ℝ2  with norm  𝑥1 ,𝑥2 =  𝑥1 + |𝑥2|  for all  𝑥1 ,𝑥2 ∈ 𝐴 , multiplication defined 

by  𝑥1 ,𝑥2 ⋅  𝑦1 ,𝑦2 =  𝑥1𝑦1 ,𝑥1𝑦2 + 𝑥2𝑦1 , unity 𝑒 = (1,0)  and cone  𝑃 = { 𝑥1 ,𝑥2 ∈ 𝐴: 𝑥1 ,𝑥2 ≥ 0} . Define 

𝑑:𝑋 × 𝑋 → 𝐴 by 𝑑 𝑥, 𝑦 =  1,𝛼 |𝑥 − 𝑦|  for all  𝑥,𝑦 ∈ 𝑋 , where 𝛼 > 0 . Then  𝑋,𝑑  is a complete cone metric 

space over Banach algebra 𝐴. Define a mapping 𝑇:𝑋 → 𝑋 by  

𝑇𝑥 =  

𝑥

1 + 𝑥
if   𝑥 ∈ [0,1]

𝑥 − sin𝑥 if   𝑥 ∉ [0,1]

 . 

 

Define a binary relation ℛ  on 𝑋by ℛ = { 𝑥,𝑦 ∈ 𝑋 × 𝑋:𝑦 ≤ 𝑥,𝑥,𝑦 ∈ [0,1]}.Then it is easy to see that 𝑇  is a 

relation theoretic 𝜑-contractive mapping with 𝜑 𝑥1 ,𝑥2 =  
𝑥1

1+𝑥1
,

𝑥2

1+𝑥2
   for all 𝑥1 ,𝑥2 ∈ 𝑃. 

(i) Since 𝑇 is non-decreasing with respect to usual order of ℝ , therefore, ℛ is 𝑇-closed. 

(ii) For each 𝑥 ∈ [0,1] we have 𝑥0 ,𝑇𝑟𝑥0 ∈ ℛ. 

(iii)  Since [0,1] is a closed subset of ℝ (with respect to usual topology), therefore limit of any convergent 

sequence in [0,1] is again in [0,1]. So, ℛ𝑠 is d-self-closed.  

 

Thus, all the properties of Theorem 3.7 are satisfied and we can assure the existence of fixed point of𝑇 in ℝ. Indeed, 

the set of fixed point of  𝑇 is ℱ 𝑇 = {(𝑛𝜋,𝑛𝜋):𝑛 ∈ ℤ}. 

 

The above example shows that previous theorems ensure only the existence of the fixed point of a relation theoretic 

𝜑-contractive mapping defined on a cone metric space over Banach algebra and the fixed point of such mappings 

need not be unique. To ensure the uniqueness of fixed point, we introduce the following condition: 

(H): For all 𝑥,𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such that 𝑥, 𝑧 ∈ ℛ𝑠  and 𝑦, 𝑧 ∈ ℛ𝑠. 
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Theorem9. Adding condition (H) to the hypotheses of Theorem 3.6(resp. Theorem 3.7) we obtain uniqueness of the 

fixed point of  𝑇. 

Proof.Suppose that 𝑥∗ and 𝑦∗are two distinct fixed point of 𝑇. From (H), there exists 𝑧 ∈ 𝑋 such that 
 𝑥∗ , 𝑧 ∈ ℛ𝑠 and 𝑦∗,𝑧 ∈ ℛ𝑠. 

Assume that 𝑥∗ ≠ 𝑧 and 𝑦∗ ≠ 𝑧. Since 𝑇 is a relation theoretic 𝜑-contractive mapping, using the 𝑇-closedness of ℛ 

we obtain  
𝑑 𝑥∗,𝑇𝑛𝑧 = 𝑑 𝑇𝑥∗,𝑇𝑛𝑧 

= 𝑑 𝑇𝑥∗,𝑇𝑇𝑛−1𝑧 

≼ 𝜑 𝑑 𝑥∗,𝑇𝑛−1𝑧  .

 

Repetition of the above process and the properties of 𝜑 give: 

𝑑 𝑥∗,𝑇𝑛𝑧 ≼ 𝜑𝑛 𝑑 𝑥∗, 𝑧  for all 𝑛 ∈ ℕ. 

Since lim𝑛→∞ 𝜑𝑛 𝑑 𝑥∗ , 𝑧  = 𝜃, by Lemma 2.3, for every 𝑐 ∈ 𝑃° there exists𝑛0 ∈ ℕ such that 𝑑 𝑥∗,𝑇𝑛𝑧 ≪ 𝑐 for 

all 𝑛 > 𝑛0. Therefore, 𝑇𝑛𝑧 → 𝑥∗ as 𝑛 → ∞. 

With a similar process we can obtain 𝑇𝑛𝑧 → 𝑦∗ as 𝑛 → ∞, and so in view of Remark 2.7 we obtain 𝑥∗ = 𝑦∗. This 

contradiction proves the uniqueness of fixed point.    

If 𝑥∗ = 𝑧 or 𝑦∗ = 𝑧, then the conclusion is trivial.                                                                         ∎ 

The following corollary is an improved version of the main result of Liu and Xu [10]. 

 

Corollary 10.Let (𝑋, 𝑑) be a complete cone metric space and 𝑃 be a solid cone. Suppose that the mapping 𝑇:𝑋 →
𝑋 satisfies the generalized Lipschitz condition 

𝑑 𝑇𝑥,𝑇𝑦 ≼ 𝑘𝑑 𝑥, 𝑦 for all 𝑥,𝑦 ∈ 𝑋, 
where 𝑘 ∈ 𝑃  with  𝜌(𝑘) < 1 . Then 𝑇  has a unique fixed point in  𝑋 , and for any   𝑥 ∈ 𝑋 , the iterative 

sequence  𝑇𝑛𝑥 converges to the fixed point. 

Proof.Define𝓡 = 𝑋 × 𝑋, i.e., theuniversal relation and 𝜑 𝑥 = 𝑘𝑥  for all 𝑥 ∈ 𝑃 , in Theorem 3.9 we obtain the 

required result.                  ∎ 

 

The following corollary is an improved cone metric version of results of Ran and Reurings [16] andNieto and 

Rodríguez-López [13]. 

 

Corollary 11.Let 𝑋,𝑑 be a complete cone metric space over Banach algebra 𝐴 and ⊑ be a partial order on 𝑋. Let 

𝑇:𝑋 → 𝑋 be a mapping satisfying the following conditions: 

(i) 𝑑 𝑇𝑥,𝑇𝑦 ≼ 𝜑(𝑑(𝑥,𝑦)) for all 𝑥 ⊑ 𝑦; 

(ii) 𝑇 is nondecreasing with respect to ⊑; 

(iii)  there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⊑ 𝑇𝑥0; 

(iv)  at least one of the following conditions is satisfied: 

(A) 𝑇 is continuous; or 

(B) if 𝑥𝑛  is a non-decreasing sequencewith respect to ⊑ with 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞,then there exists a 

subsequence  𝑥𝑛𝑘
 of 𝑥𝑛  such that 𝑥𝑛𝑘

⊑ 𝑥 for all  𝑘 ∈ ℕ. 

 

Then 𝑇 has a fixed point, i.e., there exists 𝑥∗ ∈ 𝑋 such that 𝑇𝑥∗ = 𝑥∗. In addition, if for all 𝑥,𝑦 ∈ 𝑋 there exists a 

𝑧 ∈ 𝑋, such that 𝑥 ⊑ 𝑧 and 𝑦 ⊑ 𝑧, then the fixed point of  𝑋 is unique. 

Proof.Define a binary relation ℛ on 𝑋 by ℛ = { 𝑥,𝑦 ∈ 𝑋 × 𝑋: 𝑥 ⊑ 𝑦}. Then, it is easy to see that all the conditions 

of Theorem 3.9 are satisfied and result follows.    ∎ 
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